Ovarian and hormonal response of female goats to active immunization against inhibin

M S Medan1,2, G Watanabe1,3, K Sasaki4, Y Nagura5, H Sakaime5, M Fujita5, S Sharawy2 and K Taya1,3

1Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
2Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
3Department of Basic Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
4Hitachi Ltd, Central Research Laboratory, Tokyo 185-8601, Japan
5National Livestock Breeding Centre, Nagano Station, Nagano, Japan

(Requests for offprints should be addressed to K Taya; Email: taya@cc.tuat.ac.jp)

Abstract

This study was conducted to evaluate the effect of active immunization against inhibin on hormonal levels and the ovulation rate in goats. Ten adult Shiba goats (Capra hircus) in two groups were used in this study. The first group was injected with inhibin vaccine (immunized, n=5) and the second group was injected with Freund’s adjuvant (control, n=5) followed by three booster injections at 4-week intervals. After the third booster injection, three consecutive periods of oestrus were induced using prostaglandin F2α at intervals of 11 days. Blood samples were collected at 2–6 h intervals and the ovaries were monitored using B-mode ultrasonography. All inhibin-immunized goats generated antibodies that bound [125I]-labelled bovine inhibin and their FSH concentrations were significantly higher than corresponding values in the control group. Also, inhibin-immunized goats had significantly higher preovulatory oestradiol-17β (P<0.01) and higher concentrations of progesterone in the luteal phase (P<0.05). Immunization of goats against inhibin resulted in a significant (P<0.01) increase in ovulation rate (control: 1.7 ± 0.3 vs immunized: 7.6 ± 1.1).

These results demonstrate that active immunization against inhibin enhances ovarian follicular development and ovulation rate by promoting an increase in pituitary FSH secretion. Therefore, immunization against inhibin may be a useful alternative to the conventional approach of superovulation in goats.

Journal of Endocrinology (2003) 177, 287–294

Introduction

In domestic animals, the induction of multiple ovulations is possible by potentiating the stimulatory effects of the endogenous gonadotrophin by administering hormones with follicle-stimulating hormone (FSH)-like activity or by removing the inhibitory action of ovarian hormones on gonadotrophin release by the hypothalamus–pituitary axis. Considerable interest has been placed on inhibin, which is possible by potentiating the stimulatory e ect of the inhibin molecule revealed that both inhibin forms (A and B) share a common α-subunit, but different β-subunits (Ling et al. 1985). Also, the β-subunits were found to exist in dimeric forms (activins), often with opposite biological activity to inhibin (Ling et al. 1986, Vale et al. 1986). These observations suggest that the α-subunit, but not the β-subunit, could be suitable as an immunogen to neutralize the activity of both inhibin forms. Domestic and laboratory animals have been immunized against a variety of inhibin preparations, and increases in ovulation rate have been reported in mares (McCue et al. 1992), sheep (Mizumachi et al. 1990, Wrathall et al. 1990, 1992, Wheaton et al. 1992, Anderson et al. 1998), cattle (Glencross et al. 1994), goats (Dietrich et al. 1995, Hennies et al. 2001) and guinea pigs (Shi et al. 2000). Although most studies revealed that passive immunization against inhibin increased FSH levels (Campbell & Scaramuzzi 1995, Kusina et al. 1995, Akagi et al. 1997, Takedomi et al. 1997, Nambo et al. 1998, Shi et al. 1999), there were conflicting results about the effect of active immunization against inhibin on FSH secretion.

The objective of this study was to determine the effect of active immunization against inhibin on gonadotrophins, oestradiol or progesterone secretion and ovulation rate in goats.
Materials and Methods

Preparation of the immunogen

The immunogen used (inhibin vaccine) was a synthetic peptide, corresponding to the N-terminal sequence (1–26) of the α-subunit of porcine inhibin conjugated to rabbit serum albumin as described previously (Konishi et al. 1996). For immunization, 100 µg synthetic peptide per dose were dissolved in 1 ml PBS and emulsified with an equal volume of Freund’s complete adjuvant.

Animals and treatment

Ten adult Shiba goats (Capra hircus) were used in this study. The animals were housed under natural daylight and fed 700 g/animal of hay cubes daily. Mineral salt blocks and water were freely available. Oestrous cycles were synchronized by i.m. injection of complete adjuvant. After the third booster injection, s.c. injections of 1 ml saline emulsified in 1 ml Freund’s 4-week intervals and the control group (n=5) treated with s.c. injections of 1 ml saline emulsified in 1 ml Freund’s complete adjuvant. After the third booster injection, oestrous cycles were synchronized by i.m. injection of 125 µg PGF$_2$α. Two further PGF$_2$α injections were given at 11-day intervals to shorten oestrous cycles by inducing luteolysis. The experimental protocol was approved in accordance with the Guide for the Care and Use of Laboratory Animals prepared by Tokyo University of Agriculture and Technology.

Blood samples for inhibin antibody titres and hormone concentrations

For examination of titres of inhibin antibodies, blood samples were collected by jugular venepuncture once per week. After the third booster immunization, blood samples were collected every 6 h for 2 days before PG-induced luteolysis, every 2 h from 48 to 72 h after PG injection to detect the luteinizing hormone (LH) surge, then every 6 h until the next PG injection. The same regimen of sampling was repeated during the next cycle to determine gonadotrophin level. Oestradiol–17β and progesterone were determined in daily blood samples. Blood samples were collected into heparinized Vacutainer tubes (Venoeject II; Terumo, Tokyo, Japan), centrifuged at 1200 g for 15 min, and plasma was separated and stored at −20°C until assayed for hormones.

Assessment of inhibin antibody titres

Changes in inhibin binding activity in plasma were determined by measuring the binding of 125I-labelled inhibin (5000 c.p.m.) as reported previously (Kaneko et al. 1993). Plasma samples were diluted 1:10 with PBS containing 5% BSA. PBS (100 µl) was added to each aliquot (100 µl) of diluted plasma and incubated for 24 h at 37°C with 125I-labelled bovine 32 kDa inhibin. Bound tracer was then separated by adding 100 µl PBS containing 1% bovine gamma globulin and 500 µl PBS containing 25% polyethylene glycol (molecular mass 6000 Da), mixing for 3 min, centrifuging at 1200 g for 30 min at 4°C and then counting the radioactivity in the precipitate. Inhibin-binding activity was expressed as a percentage of the total counts added.

Ultrasound examination

The ovaries were monitored using a B-mode scanner (ECHOPAL ultrasound scanner; Hitachi Medical Corporation, Tokyo, Japan) equipped with a 7-5 MHz transducer transrectally every 12 h from PG injection until the end of oestrus and on day 7 post-ovulation to count corpora lutea. The occurrence of ovulation was assessed as the disappearance of large antral follicles present at the previous ultrasonography examination confirmed by detection of corpora lutea on day 7 post-ovulation. Ovulation rate was determined by matching the number of large antral follicles that disappeared with the number of corpora lutea detected (Pierson & Ginther 1988).

Hormone analysis

Plasma concentrations of FSH were measured by RIA as described by Araki et al. (2000) using anti-ovine FSH, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)-FSH-I-1 for radioiodination, and NIDDK-oFSH-RP-1 as a reference standard. Plasma concentrations of LH were measured by RIA as described by Mori & Kano (1984) using anti-ovine LH (YM No. 18), NIDDK-oLH-I-3 for radioiodination, and NIDDK-oLH-RP-24 as a reference standard. The intra- and interassay coefficients of variation were 9.8 and 12.6% for FSH and 5.9 and 6.5% for LH respectively. Plasma concentrations of oestradiol–17β and progesterone were determined by a double-antibody RIA system using 125I-labelled radioligands as described previously (Taya et al. 1985). Antiserum against oestradiol–17β (GDN 244) and progesterone (GDN 337) were kindly provided by Dr G D Niswender (Animal Production and Biotechnology, Colorado State University, Fort Collins, CO, USA). The intra- and interassay coefficients of variation were 5.7 and 7.4% for oestradiol–17β and 8.2 and 9.2% for progesterone respectively.
Statistical analysis

Mean values ± S.E.M. were calculated and analysed using two-way ANOVA. Duncan’s multiple-range test was used for detection of significant differences using the SAS computer package (SAS 1987). Wilks’ lambda correlation was made between inhibin antibody titres and ovulation rate.

Results

Plasma anti-inhibin titres

The time course of antibody development in immunized animals as determined by binding of 125I-labelled bovine inhibin is shown in Fig. 1. Antibodies that bound 125I-labelled bovine inhibin were produced by all goats receiving the vaccine. Titres rose after primary immunization reaching 36.2 ± 3.1% at 1:10 dilution within 6 weeks. In contrast, antibody titres in the control group remained low (<3.0%).

Plasma concentrations of FSH and LH

The overall mean basal FSH concentrations for the 30-day period after the third booster immunization (PG-shortened cycles) were significantly higher (P<0.05) in inhibin-immunized goats (9.2 ± 0.2 ng/ml, n=132) than in the controls (5.0 ± 0.2 ng/ml, n=132). In both groups, PG injection was followed by a preovulatory surge in FSH (immunized: 27.1 ± 2.3 vs control: 19.9 ± 0.8 ng/ml; P<0.05) coincident with the LH surge (Fig. 2a). Plasma concentrations of LH did not differ significantly between inhibin-immunized and control goats (Fig. 2b). Overall, mean plasma LH values were 0.9 ± 0.1 ng/ml in the immunized group and 1.1 ± 0.1 ng/ml in the control group. The mean time interval between PGF2α injection and the occurrence of the preovulatory LH surge was significantly (P<0.05) shorter in the inhibin-immunized group than the control group (53.9 ± 1.5 h in the immunized group and 61.3 ± 1.8 h in the control group).

Oestradiol-17β and progesterone

Plasma concentrations of oestradiol-17β rose after PG-induced luteolysis to reach a peak value which was significantly (P<0.01) higher in immunized goats (47.8 ± 2.9 pg/ml, n=15) than in controls (24.8 ± 1.7, n=15). The concentration then fell and remained relatively low until the next PG injection, with the exception of a smaller peak 4–5 days after oestrus (Fig. 3a). Three to four days after ovulation (ovulation was determined by ultrasonography as sudden disappearance of large follicles) the expected rise in the plasma concentrations of progesterone was observed in all goats, confirming that ovulation had occurred. Progesterone values were significantly (P<0.05) higher in immunized compared with respective values in controls (Fig. 3b).

Ovarian activity and ovulation rate

After injection of PGF2α, all goats exhibited oestrus and ovulated. The interval from PGF2α injection to onset of oestrus was significantly (P<0.05) shorter in the immunized group (46.8 ± 1.8 and 54.4 ± 2.5 h in actively immunized and control goats respectively). Ovulation rates were recorded over three PG-shortened consecutive oestrous cycles after the third booster immunization against inhibin. There was around a 4-fold increase in ovulation rate in goats actively immunized against inhibin (Fig. 4). The mean ovulation rate was 1.7 ± 0.3 and 7.6 ± 1.1 in control and immunized groups respectively. There was a positive correlation (r=0.9, P<0.001) between inhibin antibody titre and ovulation rate. Figure 5 shows ultrasound images of ovaries of immunized goats containing many preovulatory follicles during the follicular phase and many corpora lutea during the luteal phase in the limited ovarian space, confirming multiple ovulation compared with control goats.

Discussion

In the present study, we have clearly demonstrated the efficacy of immunization against inhibin α-subunit in
Figure 2 Plasma concentrations of FSH (a) and LH (b) in inhibin-immunized (■: $n=5$) and control goats (□: $n=5$) during 30 days encompassing three consecutive periods of oestrus. Black arrows indicate PG injection and white arrows indicate oestrus. Values are means ± S.E.M.
increasing the ovulation rate in goats. We have also shown that superovulation is associated with elevated plasma concentrations of FSH. Immunization against inhibin stimulated an immune response and all immunized goats generated antibodies that bound 125I-labelled inhibin. Antibody binding was significant, confirming that the increased ovulation rate after immunization with synthetic peptides based on the inhibin α-subunit was due to immunoneutralization of endogenous inhibin. Mean plasma concentrations of FSH were significantly higher in immunized animals compared with control animals throughout 30 days (during PG-shortened oestrous cycles). This provides further evidence that immunization against inhibin increased plasma concentrations of FSH and then increased ovulation rate. Increased FSH levels in the immunized group were in agreement with those reported.
in ewes (Mizumachi et al. 1990, Wrathall et al. 1990, 1992, Wheaton et al. 1992, Russell et al. 1994, Tannetta et al. 1997) and disagree with Hennies et al. (2001), who reported an increase in ovulation rate in inhibin-immunized goats without any change in FSH level. Immunoneutralization of endogenous inhibin was thought to result in diminished negative feedback on the anterior pituitary gland resulting in increased FSH secretion, subsequently increased follicular development and finally increased ovulation rate. In the present study, an approximately 4-fold increase in ovulation rate was observed following the third booster immunization. Similar findings were recorded in ewes (Anderson et al. 1998). In contrast to FSH, there was no marked change in the LH profile between the immunized and the control goats. The lack of an effect on LH secretion recorded in inhibin-immunized goats contrasts with the findings of Hennies et al. (2001) who reported that LH levels were reduced in inhibin-immunized goats. However, in the present study,

![Ovulation rate in inhibin-immunized (solid bar; n=5) and control goats (open bar; n=5) during three consecutive PG-shortened oestrous cycles after the third booster immunization. Values are means ± S.E.M. **P<0.01.](image1)

Figure 4

![Ultrasound images of ovaries of goats produced by using a transrectal 7.5 MHz transducer and B-mode scanner. (a) The arrowhead indicates an antral follicle. (b) The arrowhead indicates a corpus luteum. (c) The arrowheads indicate multiple antral follicles. (d) The arrowheads indicate multiple corpora lutea. Note that there are many antral follicles and corpora lutea in inhibin-immunized goats (c and d) compared with control goats (a and b). Scale bar represents 10 mm.](image2)

Figure 5
immunized goats displayed an earlier preovulatory LH surge than control goats. This might be attributed to the increased amounts of oestrogen secreted by the large number of developing follicles in immunized goats (Campbell & Scaramuzzi 1995). Similar results were recorded in ewes immunized against inhibin (Anderson et al. 1998). Plasma concentrations of oestradiol rose immediately after PG injection in all goats. The peak level of plasma concentrations of oestradiol-17β in the inhibin-immunized group was significantly higher than controls. This is similar to previous results recorded in goats (Hennies et al. 2001). The increase in plasma concentrations of oestradiol-17β is probably due to an increased number of oestrogenic follicles destined to ovulate. The progesterone levels in inhibin-immunized goats were significantly higher than in controls. This might be attributed to the increased amounts of oestrogen secreted by the large progesterone levels most likely reflect the increased ovulation rate and increased corpora lutea numbers in immunized goats.

In conclusion, the present study demonstrates that active immunization against the inhibin α-subunit increases ovarian activity and ovulation rate, which is associated with elevated FSH secretion. Therefore, immunization of goats against inhibin could be used to generate increases in litter size or increased numbers of oocytes and/or embryos for multiple-ovulation embryo-transfer programmes.

Acknowledgements

We are grateful to Dr A F Parlow (National Institute of Diabetes and Digestive and Kidney Diseases, Beltsville, MD, USA) for providing RIA materials for ovine FSH and LH, Dr G D Niswender (Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, USA) for providing antiserum to oestradiol-17β (GDN 244) and progesterone (GDN 337) and Dr Y Mori (University of Tokyo, Bunkyo-ku, Tokyo, Japan) for antiserum to ovine LH (YM-18). This work was supported in part by the Ito Foundation, the Japan Livestock Technology Association and a Grant-in-Aid for COE Research (E-1) from the Ministry of Education, Science, Sports and Culture, Japan.

References

Mizumachi M, Voglmayer JK, Washington DW, Chen CL & Bardin CW 1990 Superovulation of ewes immunized against the human recombinant inhibin α-subunit associated with increased pre and postovulatory follicle-stimulating hormone levels. Endocrinology 126 1058–1063.

Received in final form 20 January 2003
Accepted 4 February 2003